Structures of gram-negative cell walls and their derived membrane vesicles.
نویسنده
چکیده
Gram-negative cell walls are strong enough to withstand ;3 atm of turgor pressure (40), tough enough to endure extreme temperatures and pHs (e.g., Thiobacillus ferrooxidans grows at a pH of '1.5) and elastic enough to be capable of expanding several times their normal surface area (41). Strong, tough, and elastic . . . the gram-negative cell wall is a remarkable structure which protects the contents of the cell and which has stood the test of time for many, many years. Presumably, these three descriptive traits, have much to do with the tremendous success gram-negative bacteria have had as a life-form on our planet; members of the domain Bacteria inhabit almost all imaginable habitats except those excruciatingly extreme environments in which (some) members of the domain Archaea thrive. Molecular biological methods have not yet given scientists a precise historical record of the origin of gram-negative bacteria, but ancient stromatolites containing fossilized remains of cyanobacterium-like prokaryotes date back to the Archean eon. Over such extraordinary periods of time (much of it when no other life existed), we can imagine that random mutation, selection, and the slowly but ever-changing global environment gave rise to two fundamentally different cell wall formats in Bacteria; gram-positive and gram-negative varieties. Gram-positive cell walls, once thought to be relatively simple structural entities, can be quite different from one another, especially when cell wall turnover is taken into account (8, 9, 25, 29). The cell walls of gram-negative bacteria follow a more general structural format than that of gram-positive bacteria, which is strictly adhered to; gram-negative bacteria have an outer membrane situated above a thin peptidoglycan layer. Sandwiched between the outer membrane and the plasma membrane, a concentrated gel-like matrix (the periplasm) is found in the periplasmic space (7, 9). Because the periplasm exists above the plasma membrane, it is not part of the protoplast, and because the periplasm is differentiated from the external environment by the outer membrane, it is not part of the “outside.” It is in fact an integral compartment of the gram-negative cell wall (5). Together the plasma membrane and the cell wall (outer membrane, peptidoglycan layer, and periplasm) constitute the gram-negative envelope (5, 9). Our entire perception of gram-positive and gram-negative walls ultimately relies on the response of bacteria to Gram staining. Unwittingly, in 1884, Christian Gram developed a staining regimen for light microscopy which differentiated between these two types of bacteria because of the chemical composition and structural format of their cell walls. Because gram-negative bacteria possess a lipid-rich outer membrane (as well as a plasma membrane) and a thin peptidoglycan layer, the alcohol decolorizing step of Gram staining washes the primary stain (crystal violet) from the cells and the secondary stain (carbol fuchsin or saffranin) colors the bacteria red (57). Gram-positive bacteria are enshrouded in thicker, more resilient cell walls which do not allow the crystal violet to be removed and, accordingly, remain purple (57). Although the vast majority of bacteria adhere to the color differentiation of the Gram stain, to the chagrin of microbiological taxonomists, some bacteria refuse to obey; these are called gram-variable bacteria (6). Members of the Archaea cannot be easily differentiated by Gram staining (10). Interestingly, the staining response of gram-variable bacteria and archaea is also due to their cell wall composition and structure (6, 10). Advances in identifying gram-negative cell wall components, their cytoplasmic synthetic and plasma membrane translocation routes, and their individual functional attributes have been electrifying over the last decade. This is primarily due to their intricate dissection by modern molecular techniques. There are several up-to-date reviews describing specific gramnegative cell wall systems which emphasize their molecular biological aspects (28, 56, 60), and I will not revisit them in this minireview.
منابع مشابه
New insight into the application of outer membrane vesicles of Gram-negative bacteria
This review presents a brief outline of our current knowledge of the structure and chemical composition of the outer membrane vesicles (OMVs), originating from the surface of Gram negative bacteria including their outer membrane proteins and lipopolysaccharides. Moreover, the functional roles and applications of OMVs in medical research such as OMV-based vaccines, OMV adjuvants properties, OMV ...
متن کاملImmunogenicity of enterotoxigenic Escherichia coli outer membrane vesicles encapsulated in chitosan nanoparticles
Objective(s): Enterotoxigenic Escherichia coli (ETEC) is an important cause of diarrheal disease in humans, particularly in children under 5 years and travelers in developing countries. To our knowledge, no vaccine is licensed yet to protect against ETEC infection. Like many Gram-negative pathogens, ETEC can secrete outer membrane vesicles (OMVs). These structures contain various immunogenic vi...
متن کاملEngraftment of plasma membrane vesicles into liposomes: A new method for designing of liposome-based vaccines
Objective(s):One of the major challenges in the field of vaccine design is choosing immunogenic antigens which can induce a proper immune response against complex targets like malignant cells or recondite diseases caused by protozoan parasites such as leishmaniasis. The aim of this study was to find a way to construct artificial liposome-based cells containing fragments of target’s cell membran...
متن کاملOprF and OprL Conjugate as Vaccine Candidates against Pseudomonas aeruginosa; an in Silico Study
Introduction: Vaccine studies against Pseudomonas aeruginosa have often focused on outer membrane proteins (OPRs) due to their potent stimulation of the immune response. Using major outer membrane proteins of cell walls (mOMPs) of P. aeruginosa and other Gram-negative bacteria actively stimulate the immune system without any toxic side effects. Moreover, these antigens show immunological cross-...
متن کاملBacterial outer membrane vesicles and the host-pathogen interaction.
Extracellular secretion of products is the major mechanism by which Gram-negative pathogens communicate with and intoxicate host cells. Vesicles released from the envelope of growing bacteria serve as secretory vehicles for proteins and lipids of Gram-negative bacteria. Vesicle production occurs in infected tissues and is influenced by environmental factors. Vesicles play roles in establishing ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 181 16 شماره
صفحات -
تاریخ انتشار 1999